
Bitcloud Immersion

High Level Technical Description

Presentation Goal

Provide all interested developers an understanding of
the Bitcloud core architecture as currently designed

Overview of the Bitcloud project and software,
according to current state

Give an overview of Bitcloud components, processes,
and component/process interaction within key software
operations

Dive into Bitcloud’s distributed DB core: Nodepool.sql

Presentation Format/Agenda

•Held via Hangout and recorded for future video
distribution

•Business, Project Management, and Technical
presenters

ADDITIONAL INFORMATION AT:

http://bitcloudproject.org/

https://github.com/wetube/bitcloud/

http://bitcloudproject.org/
https://github.com/wetube/bitcloud/

Presentation Outline

1. Description of Bitcloud

2. High-level architecture and design

3. Nodepool.sql specifications

4. Questions and answers

Bitcloud Description

Bitcloud is an open source software platform currently
under development for:

• Cryptographically supported,
• Community provided,
• Grid-based,

• Distributed,

• Network services (beginning with “cloud storage”)

• That are automatically maintained by random
consensus synchronization operations.

Bitcloud Description (cont.)

Bitcloud may utilize, but is not, all of the following:

Cryptocurrency, including escrow or other surety - but
applications can create their own on top of the open
source Bitcloud platform;

Bitcloud has designs for automatic agreement execution
functionality specific to procurement and delivery of its
network services, but Bitcloud is not itself an automated
agreement platform; and/or

 A Tor router, but Bitcloud can run on top of Tor if
communication quality is not a strong requirement.

Bitcloud Description (cont.)

Bitcloud, however, could be leveraged for:

Distributed Applications (Dapps) may be built on top of or
integrated with the Bitcloud software platform.

As a result of Bitcloud's core distributed, relational,
mutable database, there are few limits on the kinds of
applications that can leverage the Bitcloud platform.

Cryptocurrencies, cryptoassets, stock applicaitons or other
payment mechanisms may be built on top of Bitcloud.

Current cryptocurrencies like Bitcoin or Dogecoin can
be integrated into Bitcloud and used without
modification in the automated escrow/agreement
operations.

Bitcloud Description (cont.)

Additional possibilities:

Automated agreement or “smart contract” platforms (e.g.,
Ethereum, OpenTransactions) may integrate with
Bitcloud’s core functionality and/or services.

Programmable or “Smart” contracts aren't the basis for the
Bitcloud platform, but Bitcloud provides certain predefined
contracts (supported by automated escrow functions) and
capability for DAs to create new automated agreement
types encoded on top of Bitcloud.

Dapps may use Bitcloud as the core of an application
providing any of the above.

How Bitcloud Works: Storage

Per the white paper:

Nodes: compose the Bitcloud Grid systems; have the roles of Storage,
Gateway, and/or Owner.

Publishers and Grids may enter into agreement for network services
(i.e., storage), validated by random tests and audits (with automated
consensus) whenever applicable.

Users approved by publishers push content/data to storage grids via the
Grid's Gateway Nodes with encrypted communication.

The Gateway(s) sign and slice the file, and push each slice to its Grid's
Storage Nodes, which replicates slices with N-to-K redundancy such
that 60% (for example) of the Nodes storing a file may go offline with the
file still able to be retrieved.

How Bitcloud Works: Storage

Publishers certify registered users as the CA over their data, or
generate unregistered users by providing them a pair of keys, to
authorize and enable automatic download and decryption of the files
stored on a Bitcloud grid. Those users are always attached to the
Publisher's portfolio, so origin and intention of users may easily be
determined.

The Bitcloud User Interface allows automated transaction requests for
Publisher authorized file(s) from the Grid Gateway, which is verified by
the Grid's Owner(s).

The transmitting Gateway Node(s) send requests to closest storage
nodes containing the required slices, receives slices in parallel,
reassembles, and decrypts the entire file.

 Gateway sends the file to the user via encrypted communication in a
manner that the user's client can receive (e.g., HTTPS), and the
request's closeout routines are run.

Sync: Data Event Routines

As part of sync maintenance operations, checks occur:

At the event Storage Nodes attempts to provide services within a grid,
the Grid's Owner and other nodes validate the requesting Storage Node
has its Nodepool globally synced tables complete and valid.

At the event Nodes or Publishers begin interaction with any other
network participant, both party checks each other's certificate to ensure
it is valid and comes from a mined source.

At the time of agreement solicitation by the Grid Owner to ensure its grid
has the capacity and service level requested.

At the event of a user request, the delivering Gateway checks the key
against a publisher controlled table to verify permissions.

At the completion of a Storage Node's delivery of a requested file slice,
by the Gateway to ensure data validity and to validate node quality of
service.

Sync: Periodic Check Routines

In addition to event-based checks, the automatic maintenance periods
occur with the following:

A random-yet-deterministic number generation process results in a node
getting assigned 16 connections for synchronization activities.

The nodes run consensus routines to arrive at valid operational DB
state and update all node tables accordingly.

Non-complying nodes are reported by the consensus majority to Grid
Owners, Publishers, or other applicable agents for additional
tests/audits, and or eventual removal from the network.

The above is a simplification of the basic periodic check cycle, but there
are more steps and Grid Owners, Dapps, and/or Publishers may require
custom periodic sync routines to ensure data validity and network
operational health.

Sync: Additional Maintenance

Additional checks or random-neutral-party audits may occur:

As a result of internal grid maintenance.

As encoded in the automated agreement.

As required by the DA code.

Other notes:

Every node and publisher has to mine its own certificate, and functions
as its own Certificate Authority. The mining requires solving computing
intensive problems that will take modern high-end computers 1-2 days
to complete.

Many key processes are left yet unmentioned to keep the
description high-level.

High-level Design: Components

The above diagram illustrates key Bitcloud components and
interactions, but not all.

High-level Design: Operations

Bitcloud is a platform, and not in itself an application. Bitcloud may be
used to build any number of applications.

Each participant may choose how they participate in the Bitcloud
network. Participants may be Nodes or Publishers, they may choose to
run instances of both roles.

A node instance may only be one type of role (e.g., gateway, storage,
etc.) at a time, but multiple node instances may be run on a single
machine at the same time (limited by machine capabilities).

A node or publisher may only run one Bitcloud-based Dapp per Bitcloud
instance.

Nodes may participate in multiple grids, one per instance, each with
different service capacity and levels (as configured).

Random assignment is a cornerstone to Bitcloud health.

Other Bitcloud Design Elements
Bitcloud has been designed to be built with generic tools:

Generic SQL as the core platform language. Future Bitcloud iterations
may incorporate or expand to allow for Postgre or DB types.

The first version will be programmed using generic C.

Heavily deployed SQLite DB is used to implement the generic SQL
core.

The design requires distributed CA infrastructure, but architecture
remains cryptographically agnostic. (May the best solution protect!)

Standard communication library is used – communication agnostic.

Although much of the team has a functional programming preferences, the
above generic toolset was selected to attract as many devs as possible.

Future versions must strictly enforce consistency rules (e.g., sync, cert
mining,audit, etc.), but may use other tools for performance and feature
improvements (e.g., Lisp and/or other languages, Postgre SQL, etc.).

Bitcloud Immersion

Core Architecture: Nodepool

Nodepool.sql Globally Synced Tables

Nodepool.sql Internal and Private Tables

The Nodepool design is still in development, but it is mutable and
extensible so it may always be in development.

Nodes Table
● Synced globally
● To insert a record, the inserting node must have performed a CPU/memory-

intensive mining operation as the process to generate valid keys/certificate.
● Every X days, the node must renew its registration in the database by updating

the record, otherwise it is removed and have to mine again. (This process does
not require additional CPU/memory-intensive mining.)

Main attributes are:

● The entire record is signed by the node with its private key, so no other nodes
can modify its data. At the time of sync, unsigned rows are rejected and the
node trying to cheat is audited. This applies to many tables in the nodepool too.

● Each node has an ID, similar to Kademlia ID, with the purpose of uniquely
identifying the node in the net and its state “proximity” to other nodes.

● Nodes can choose the networking protocol to use - for now it can be IP (with or
without DNS), Tor, or both. In the future, meshnets will be supported too.

● The node states its storage and bandwidth capacity, which results in a test/audit
flag if they cannot support a request within its stated capacity.

Grids Table

● It is a collection of nodes with a shared economical or social interest that
choose to operate together and provide network services
(e.g., storage).

Attributes:

● Each table record must have at least one owner, as validated by cryptographic
signature process.

● Grids table records contain grid configuration and disposition information.
● Grids make contracts with publisher and storage/gateways nodes, as stored in

the related “publisher_grid_contracts” internal table.
● A grid is responsible for choosing its gateways from the pool of its grid nodes

with signed records in the related “gateways” globally synced table.
● Grid owners are responsible to assign secondary owner(s), in case the primary

owner node goes offline.

Gateways Table

● Gateway services are solicited within the grid using the “grid_owner_requests”
internal table, and contracted between Grid Owner and Gateway Grid using the
“grid_node_contracts” internal table.

● Gateways transform the data from Bitcloud storage nodes into something
receivable by the user, like an HTTP or FTP transmission.

● Gateways can be storage nodes at the same time, but those records are
contained on a different table. However, if they don't store the content, they
can be considered routers and cannot be liable by current western laws.

● Gateways are in possession of the keys to decrypt slices coming from the
storage nodes.

● They slice the data files and distribute slices across its grid's storage nodes.

● Gateways perform various checks (e.g., node operation, file validity, etc.) as
part of their general operation and grant permission to users based on validated
publisher certification.

Many useful and needed tasks include but are not limited to:

● They can be considered analogous to the “webmasters” of Bitcloud.

● Curate data and/or content uploaded by users.

● Any registered user can upgrade to publisher at any moment (i.e., after they mine the
authority).

● They contract network services (i.e., storage) with grids under the conditions of
related distributed applications.

● They grant service (i.e., storage and/or data) access to users.

● Association of publishers are possible, making it possible for one publisher to grant
access to another publisher's users.

Publishers

● Registered users: they autonomously generate a pair of keys (i.e., “mining the
authority”) and request approval from any desired publisher.

● A user may be registered in many publishers at the same time.

● On each publisher's rolls, the user may have a different nickname but his/her keys
remain the same.

● User interface should allow the use of multiple identities/key pairs.

● Unregistered users: usually they come from browsers and their pair of keys are
provided by a publisher. Only recommended for users wanting to view only, like
people using embedded content in web pages without even noticing they are using
Bitcloud.

Users

File storage
● File storage is always encrypted and sliced such that storage nodes cannot

know what local they are storing using any available inspection technique/tool.

● Only gateways and grid owners know the data composition on storage nodes,
and content remains unknown.

● Data contents may be accessible to gateways and grid owners only in the case
that the user/publisher didn't encrypt the data in advance of transmitting it to
the grid.

● Storage is sliced and distributed redundantly using a k-of-n redundancy so that,
if most of the storage nodes storing a single file go off line, the data is still
retrievable.

● Grid owners can decide upon it's k and n redundancy (and may offer different
levels via different contract vehicles). For example k=7 and n=10 means that
70% of the nodes must go off line before data is not retrievable.

● Files and folders may be assigned to Users, and curated by Publishers.

● Files and folders have permissions in a similar way to a filesystem, with
write/read access and quota functionality available for users and publishers.

Database for Dapps

● Bitcloud intentionally allows use of its relational database (Nodepool.sql) by
Distributed Applications build on top of Bitcloud software.

● It is relational, accepting normal SQL queries.

● It is mutable, so Dapps can update or remove content from Dapp controlled
tables. Globally synced tables are not available for modification by Dapps.

● Garbage collection may optionally run according to Dapp specified rules.

● Dapps may be dynamically added to a running node at any time, or optionally
as static extension at compile time.

● Different Dapps can share the same network, so content is not fragmented and
may be universally available (according to permissions).

● Dapps can point to data of other Dapps if they set access access to do so. For
example, a social Dapp may embed a video from a media Dapp that allows it.

● Each Dapp provides its own search engine implementation, if required.
Bitcloud does not provide any as part of the platform.

● Dapps can be constructed on top of Bitcloud with a simple C language interface.

● Interface consists of generic functions like “insert”, “delete”, “update”, “check”, that
the programmer may use, or otherwise use default Bitcloud code (i.e., no interface).

● Languages other than C (e.g., Python, Java, Lisp, etc.) may be used for the interface
with FFI mechanisms. Bitcloud developers will port the API to those languages.

● Dapps are loaded dynamically, or statically built, in the form of modules similar in
fashion to Apache HTTP server modules.

● Dapps can be distributed in a common repository Dapp that the Bitcloud team will
generate after initial Bitcloud release. Each Dapp package must be signed, and there
may be dependences in a similar fashion to Debian APT repositories.

Generic API

Bitcloud Immersion

FINIS

(Thank you.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

